Al Kindi, H; Hafiane, A; You, Z; Albanese, I; Pilote, L; Genest, J and Schwertani, A (2014). Circulating levels of the vasoactive peptide urotensin II in patients with acute coronary syndrome and stable coronary artery disease. Peptides. 55: 151-157.
Almenara, CC; Broseghini-Filho, GB; Vescovi, MV; Angeli, JK; Faria, TDO; Stefanon, I; Vassallo, DV and Padilha, AS (2013). Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PloS ONE. 8: e68418.
Angeli, JK; Cruz Pereira, CA; De Oliveira Faria, T; Stefanon, I; Padilha, AS and Vassallo, DV (2013). Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2. Free Radic. Biol. Med., 65: 838-848.
Behm, D; Mcatee, J; Dodson, J; Neeb, M; Fries, H; Evans, C; Hernandez, R; Hoffman, K; Harrison, S and Lai, J (2008). Palosuran inhibits binding to primate UT receptors in cell membranes but demonstrates differential activity in intact cells and vascular tissues. Br. J. Pharmacol., 155: 374-386.
Bernatova, I (2014). Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? Biomed. Res. Int., 2014: 1-14.
Bianca, R; Mitidieri, E; Fusco, F; D’Aiuto, E; Grieco, P; Novellino, E; Imbimbo, C; Mirone, V; Cirino, G and Sorrentino, R (2012). Endogenous urotensin II selectively modulates erectile function through eNOS. PLoS ONE. 7: e31019.
Chatenet, D; Létourneau, M; Nguyen, QT; Doan, ND; Dupuis, J and Fournier, A (2013). Discovery of new antagonists aimed at discriminating UII and URP-mediated biological activities: insight into UII and URP receptor activation. Br. J. Pharmacol., 168: 807-821.
Chukwunonso Obi, B; Chinwuba Okoye, T; Okpashi, VE; Nonye Igwe, C and Olisah Alumanah, E (2016). Comparative study of the antioxidant effects of metformin, glibenclamide, and repaglinide in alloxan-induced diabetic rats. J. Diabetes Res., 2016: 1635361.
Crowley, PD and Gallagher, HC (2014). Clotrimazole as a pharmaceutical: past, present and future. J. Appl. Microbiol., 117, 611-617.
Di Villa Bianca, RDE; Mitidieri, E; Fusco, F; D’Aiuto, E; Grieco, P; Novellino, E; Imbimbo, C; Mirone, V; Cirino, G and Sorrentino, R (2012). Endogenous urotensin II selectively modulates erectile function through eNOS. PloS ONE. 7: e31019.
Dixon, R; Hwang, S; Britton, F; Sanders, K and Ward, S (2011). Inhibitory effect of caffeine on pacemaker activity in the oviduct is mediated by cAMP-regulated conductances. Br. J. Pharmacol., 163: 745-754.
Do Rego, JC; Leprince, J; Scalbert, E; Vaudry, H and Costentin, J (2008). Behavioral actions of urotensin-II. Peptides. 29: 838-844.
Elam, C; Lape, M; Deye, J; Zultowsky, J; Stanton, DT and Paula, S (2011). Discovery of novel SERCA inhibitors by virtual screening of a large compound library. Eur. J. Med. Chem., 46: 1512-1523.
Ellinsworth, DC (2015). Arsenic, reactive oxygen, and endothelial dysfunction. J. Pharmacol. Exp. Ther., 353: 458-464.
Ersoy, S; Orhan, I; Turan, N; Şahan, G; Ark, M and Tosun, F (2008). Endothelium-dependent induction of vasorelaxation by Melissa officinalis L. ssp. officinalis in rat isolated thoracic aorta. Phytomedicine. 15: 1087-1092.
Fernandes Azevedo, B; Barros Furieri, L; Peçanha, FM; Wiggers, GA; Frizera Vassallo, P; Ronacher Simões, M; Fiorim, J; Rossi De Batista, P; Fioresi, M and Rossoni, L (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. BioMed. Res. Int., 2012: 949048.
Furieri, LB; Galán, M; Avendaño, MS; García-Redondo, AB; Aguado, A; Martínez, S; Cachofeiro, V; Bartolomé, MV; Alonso, MJ; Vassallo, DV and Salaices, M (2011). Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on reactive oxygen species. Br. J. Pharmacol., 162: 1819-1831.
Grgic, I; Kaistha, BP; Hoyer, J and Kohler, R (2009). Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses--relevance to cardiovascular pathologies and drug discovery. Br. J. Pharmacol., 157: 509-526.
Houston, MC (2011). Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J. Clin. Hyperten., 13: 621-627.
Huo, L; Zhang, J; Qu, Z; Chen, H; Li, Y and Gao, W (2015). Vasorelaxant effects of Shunaoxin pill are mediated by NO/cGMP pathway, HO/CO pathway and calcium channel blockade in isolated rat thoracic aorta. J. Ethnopharmacol., 173: 352-360.
Jena, S and Chainy, GB (2008). Effect of methylene blue on oxidative stress and antioxidant defence parameters of rat hepatic and renal tissues. Indian J. Physiol. Pharmacol., 52: 293-296.
Ko, EA; Park, WS; Firth, AL; Kim, N; Yuan, JXJ and Han, J (2010). Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: modulation by protein kinases. Prog. Biophys. Mol. Biol., 103: 95-101.
Konduru, N; Keller, J; Ma-Hock, L; Groters, S; Landsiedel, R; Donaghey, TC; Brain, JD; Wohlleben, W and Molina, RM (2014). Biokinetics and effects of barium sulfate nanoparticles. Part Fibre Toxicol., 11: 55.
Loirand, G; Rolli-Derkinderen, M and Pacaud, P (2008). Urotensin II and atherosclerosis. Peptides. 29: 778-782.
Macirella, R; Guardia, A; Pellegrino, D; Bernabò, I; Tronci, V; Ebbesson, L; Sesti, S; Tripepi, S and Brunelli, E (2016). Effects of two sublethal concentrations of mercury chloride on the morphology and metallothionein activity in the liver of Zebrafish (Danio rerio). Int. J. Mol. Sci., 17: 361.
Maguire, JJ; Kuc, RE; Kleinz, MJ and Davenport, AP (2008). Immunocytochemical localization of the urotensin-II receptor, UT, to rat and human tissues: relevance to function. Peptides. 29: 735-742.
Nagaraj, R; Almenara, CCP; Broseghini-Filho, GB; Vescovi, MVA; Angeli, JK; Faria, TDO; Stefanon, I; Vassallo, DV and Padilha, AS (2013). Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS ONE. 8: e68418.
Omanwar, S; Saidullah, B; Ravi, K and Fahim, M (2014). Vasorelaxant effects of mercury on rat thoracic aorta: the nitric oxide signaling mechanism. Hum. Exp. Toxicol., 33: 904-910.
Onsa-Ard, A; Shimbhu, D; Tocharus, J; Sutheerawattananonda, M; Pantan, R and Tocharus, C (2013). Hypotensive and vasorelaxant effects of sericin-derived oligopeptides in rats. ISRN Pharmacol., 2013, Article ID 7175292 013.
Pantan, R; Onsa-Ard, A; Tocharus, J; Wonganan, O; Suksamrarn, A and Tocharus, C (2014). Endothelium-independent vasorelaxation effects of 16-O-acetyldihydroisosteviol on isolated rat thoracic aorta. Life Sci., 116: 31-36.
Peng, H; Zhang, M; Cai, X; Olofindayo, J; Tan, A and Zhang, Y (2013). Association between human urotensin II and essential hypertension--a 1:1 matched case-control study. PLoS ONE. 8: e81764.
Proulx, CD; Holleran, BJ; Lavigne, P; Escher, E; Guillemette, G and Leduc, R (2008). Biological properties and functional determinants of the urotensin II
receptor. Peptides. 29: 691-699.
Qu, Z; Zhang, J; Gao, W; Chen, H; Guo, H; Wang, T; Li, H and Liu, C (2014). Vasorelaxant effects of Cerebralcare Granule® are mediated by NO/cGMP pathway, potassium channel opening and calcium channel blockade in isolated rat thoracic aorta. J. Ethnopharmacol., 155: 572-579.
Rameshrad, M; Babaei, H; Azarmi, Y and Fouladi, DF (2016). Rat aorta as a pharmacological tool for in vitro and in vivo studies. Life Sci., 145: 190-204.
Russell, FD (2008). Urotensin II in cardiovascular regulation. Vasc. Health Risk Manag., 4: 775-785.
Schirmer, RH; Adler, H; Pickhardt, M and Mandelkow, E (2011). Lest we forget you--methylene blue … . Neurobiol. Aging. 32(12):2325
Su, XL; Zhang, H; Yu, W; Wang, S and Zhu, WJ (2013). Role of KCa3.1 channels in proliferation and migration of vascular smooth muscle cells by diabetic rat serum. Chin. J. Physiol., 56: 155-162.
Tep-Areenan, P and Sawasdee, P (2010). Vasorelaxant effects of 5, 7, 4´-trimethoxyflavone from Kaepmferia parviflora in the rat aorta. IJP-Int. J. Pharmacol., 6: 419-424.
Wrzosek, A (2009). Endothelium as target for large-conductance calcium-activated potassium channel openers. Acta Bioch. Polonica. 56: 393-404.
Wulff, H and Castle, NA (2010). Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev. Clin. Pharmacol., 3: 385-396.
Xiong, ZM; O’donovan, M; Sun, L; Choi, JY; Ren, M and Cao, K (2017). Anti-aging potentials of methylene blue for human skin longevity. Sci. Rep., 7: 2475.