Akers, RM and Nickerson, SC (2011). Mastitis and its impact on structure and function in the ruminant mammary gland. J. Mamm. Gland Biol. Neopl., 16: 275-289.
Alva-Murillo, N; Ochoa-Zarzosa, A and López-Meza, JE (2017). Sodium octanoate modulates the innate immune response of bovine mammary epithelial cells through the TLR2/P38/JNK/ERK1/2 pathway: implications during Staphylococcus aureus internalization front. Cell. Inf. Microbiol., 7: 78.
Bai, J; Lin, J and Li, W (2012). Association of toll-like receptor 2 polymorphism with somatic cell score in Xinjiang Brown cattle. J. Anim. Sci., 83: 23-30.
Bruckmaier, RM; Ontsouka, CE and Blum, JW (2004). Fractionized milk composition in dairy cows with subclinical mastitis. Vet. Med. (Praha). 8: 283-290.
Buwitt-Beckmann, U; Heine, H; Wiesmuller, KH; Jung, G; Brock, R; Akira, S and Ulmer, AJ (2006). TLR1- and TLR6-independent recognition of bacterial lipopeptides. J. Biol. Chem., 281: 9049-9057.
Cargill, EJ and Womack, JE (2007). Detection of poly-morphisms in bovine toll-like receptors 3, 7, 8, and 9. Genomics. 89: 745-755.
Cates, EA; Connor, EE; Mosser, DM and Bannerman, DD (2009). Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-kappa B activation and apoptosis. Comp. Immunol. Microbiol. Infect. Dis., 32: 477-490.
Chu, MX; Li, CM and Shi, WH (2009). Polymorphism of TLR6 gene and its relationship with somatic cell score in Holstein cows. J. Acta Vet. ET Zootech. Sinica. 40: 1-6.
Contreras, GA and Rodríguez, JM (2011). Mastitis: com-parative etiology and epidemiology. J. Mamm. Gland Biol. Neopl., 16: 339-356.
Gajbhiye, PU and Tripathi, VN (1992). Factors affecting persistency of first lactation in Murrah buffaloes. Buffalo J., 8: 109-116.
Gan, ZH; Yang, ZP; Li, YL; Mao, YJ; Liu, XH and Chen, F (2013). Relationship of bacterial infection with somatic cell count and milk composition in dairy cows with mastitis. Chin. J. Anim. Vet. Sci., 44: 972-979.
Girish, H; Sivaselvam, SN; Karthickeyan, SMK and Rahumathulla, PS (2015). Association of toll-like receptor gene polymorphism with somatic cell score in indigenous. Crossbred Jersey and Crossbred Holstein Friesian cattle. Eur. J. Mol. Biol. Biochem., 2: 223-227.
Griebel, P; Brownlie, R; Manuja, A; Nichani, A; Mookherjee, N; Popowych, Y; Mutwiri, G; Hecker, R and Babiuk, LA (2005). Bovine toll-like receptor 9: a comparative analysis of molecular structure, function and expression. Vet. Immunol. Immunopathol., 108: 11-16.
Gröhn, YT; Wilson, DJ; González, RN; Hert, JA; Schulte, H; Bennett, G and Schukken, YH (2004). Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. J. Dairy Sci., 87: 3358-3374.
He, Y; Chu, Q; Ma, P; Wang, Y; Zhang, Q; Sun, D; Zhang, Y; Yu, Y and Zhang, Y (2011). Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J. Dairy Res., 78: 242-249.
Huang, J; Liu, L; Wang, H; Zhang, C; Ju, Z; Wang, C and Zhong, J (2011). Variants and gene expression of the TLR2 gene and susceptibility to mastitis in cattle. Asian J. Anim. Vet. Adva., 6: 51-61.
Ibrahim, N (2017). Review on mastitis and its economic effect. Can. J. Sci. Res., 6: 13-22.
Kant, R; de Vos, WM; Palva, A and Satokari, R (2014). Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. J. Med. Microbiol., 63: 293-308.
Mariotti, M; Williams, JL; Dunner, S; Valentini, A and Pariset, L (2009). Polymorphisms within the toll-like receptor (TLR)-2, -4 and -6 genes in cattle. Diversity. 1: 7-18.
Menzies, M and Ingham, A (2006). Identification and expression of toll-like receptors 1-10 in selected bovine and ovine tissues. Vet. Immunol. Immunopathol., 109: 23-30.
Opsal, MA; Lien, S; Brenna-Hansen, S; Olsen, HG and Vage, DI (2008). Association analysis of the constructed linkage maps covering TLR2 and TLR4 with clinical mastitis in Norwegian Red cattle. J. Anim. Breed. Genet., 125: 110-118.
Oviedo-Boyso, J; Valdez-Alarcon, JJ; Cajero-Juarez, M; Ochoa-Zarzosa, A; Lopez-Meza, JE; Bravo-Patino, A and Baizabal-Aguirre, VM (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect., 54: 399-409.
Pant, SD; Schenkel, FS; Leyva-Baca, I; Sharma, BS and Karrow, NA (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics. 8: 421.
Prebavathy, T; Thanislass, J; Dhanammal, L; Ganesan, R and Mukhopadhyay, HK (2015). Association between SNPs in TLR2 gene segment corresponding to LRR functional domain of TLR2 receptor and bovine mastitis. Asian J. Anim. Sci., 9: 45-56.
Pyorala, S (2003). Indicators of inflammation in the diagnosis of mastitis. Vet. Res., 3: 565-578.
Rashad, A; Jianfang, W; Jian, G; Tariq, A; Wei, C; Ottó, SL; Árpád, CB and Bo, H (2016). Properties and antimicrobial susceptibility of
Trueperella pyogenes isolated from bovine mastitis cases in China.
Acta Vet. Hung., 64: 1-12.
Ruegg, PL (2003). Investigation of mastitis problems on farms. Vet. Clin. North Am.: Food Anim. Pract., 19: 47-73.
Rupp, R and Boichard, D (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res. BMC., 34: 671-688.
Seabury, CM; Galvao, KN; Lager, K and Pinedo, PJ (2014). Variation in toll-like receptor genes and susceptibility to clinical mastitis in Holstein cows. ADSA-ASAS Joint Annual Meeting (Kansas CityMO, 2014).
Sun, L; Song, Y; Riaz, H; Yang, H; Hua, G; Guo, A and Yang, L (2012). Polymorphisms in toll-like receptor 1 and 9 genes and their association with tuberculosis susceptibility in Chinese Holstein cattle. Vet. Immunol. Immunopathol., 147: 195-201.
Thompson, JD; Higgins, DG and Gibson, TJ (1994). Clustal W. Improving the sensitivity and progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
Wiggans, GR and Shook, GE (1987). A lactation measure of somatic cell count. J. Dairy Sci., 70: 2666-2672.
Wilson, DJ; González, RN; Hertl, JA; Schulte, H; Bennett, G; Schukken, Y and Gröhn, Y (2004). Effect of clinical mastitis on the lactation curve: a mixed model estimation using daily milk weights. J. Dairy Sci., 87: 2073-2084.
Yang, W; Zerbe, H; Petzl, W; Brunner, RM; Günther, J; Draing, C; von Aulock, S; Schuberth, HJ and Seyfert, HM (2008). Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappa B in mammary epithelial cells and to quickly induce TNF alpha and interleukin-8 (CXCL8) expression in the udder. Mol. Immunol., 45: 1385-1397.
Zhang, LP; Gan, QF; Ma, TH; Li, HD; Wang, XP; Li, JY; Gao, X; Chen, JB; Ren, HY and Xu, SZ (2009). Toll-like receptor 2 gene polymorphism and its relationship with SCS in dairy cattle. Anim. Biotechnol., 20: 87-95.
Zhang, Z; Li, XP; Yang, F; Luo, JY; Wang, XR; Liu, LH and Li, HS (2016). Influences of season, parity, lactation, udder area, milk yield, and clinical symptoms on intramammary infection in dairy cows. J. Dairy Sci., 99: 1-10.