Aini, I (1990). Indigenous chicken production in south-east Asia. World’s Poult. Sci. J., 46: 51-57.
Berg, TPVD (2000). Acute infectious bursal disease in poultry: a review. Avian Pathol., 29: 175-194.
Brown, GG and Mims, SD (1995). Storage, transportation, and fertility of undiluted and diluted paddlefish milt. Prog. Fish-Cult., 57: 64-69.
Dhama, K; Karthik, K; Chakraborty, S; Tiwari, R; Kapoor, S; Kumar, A and Thomas, P (2014). Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pakistan J. Biol. Sci., 17: 151-166.
Elankumaran, S; Heckert, R and Moura, L (2002). Pathogenesis and tissue distribution of a variant strain of infectious bursal disease virus in commercial broiler chickens. Avian Dis., 46: 169-176.
Francois, P; Tangomo, M; Hibbs, J; Bonetti, EJ; Boehme, CC; Notomi, T; Perkins, MD and Schrenzel, J (2011). Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol., 62: 41-48.
Ingrao, F; Rauw, F; Lambrecht, B and van den Berg, T (2013). Infectious bursal disease: a complex host-pathogen interaction. Dev. Comp. Immunol., 41: 429-438.
Jackwood, DJ; Stoute, ST and Crossley, BM (2016). Pathogenicity of genome reassortant infectious bursal disease viruses in chickens and turkeys. Avian Dis., 60: 765-772.
Johnson, FB (1990). Transport of viral specimens. Clin. Microbiol. Rev., 3: 120-131.
Khan, RSA; Sajid, S; Habib, M; Ali, W; Shah, MSD and Sarfraz, M (2017). History of Gumboro (infectious bursal disease) in Pakistan. Saudi Pharm. J., 25: 453-459.
Kimura, M (1980). A simple method for estimating evolutionary rates of base substitutions through com-parative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120.
Kwok, S; Kellogg, D; McKinney, N; Spasic, D; Goda, L; Levenson, C and Sninsky, J (1990). Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res., 18: 999-1005.
Mansour, SM; Ali, H; Chase, CC and Cepica, A (2015). Loop-mediated isothermal amplification for diagnosis of 18 World Organization for Animal Health (OIE) notifiable viral diseases of ruminants, swine and poultry. Anim. Health Res. Rev., 16: 89-106.
Mori, Y; Kitao, M; Tomita, N and Notomi, T (2004). Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods. 59: 145-157.
Mori, Y and Notomi, T (2009). Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chem., 15: 62-69.
Müller, H; Scholtissek, C and Becht, H (1979). The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J. Virol., 31: 584-589.
Nagamine, K; Hase, T and Notomi, T (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes. 16: 223-229.
Notomi, T; Okayama, H; Masubuchi, H; Yonekawa, T; Watanabe, K; Amino, N and Hase, T (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 28: e63.
Parida, M; Sannarangaiah, S; Dash, PK; Rao, P and Morita, K (2008). Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev. Med. Virol., 18: 407-421.
Pham, HM; Nakajima, C; Ohashi, K and Onuma, M (2005). Loop-mediated isothermal amplification for rapid detection of Newcastle disease virus. J. Clin. Microbiol., 43: 1646-1650.
Saitou, N and Nei, M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.
Sarwar, F; Usman, M; Umar, S; Hassan, M; Rehman, A and Rashid, A (2015). Some aspects of backyard poultry management practices in Rural Areas of District Rawalpindi, Pakistan. IJLR., 5: 14-20.
Tamura, K; Peterson, D; Peterson, N; Stecher, G; Nei, M and Kumar, S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739.
Tamura, K; Stecher, G; Peterson, D; Filipski, A and Kumar, S (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30: 2725-2729.
Tsai, SM; Liu, HJ; Shien, JH; Lee, LH; Chang, PC and Wang, CY (2012). Rapid and sensitive detection of infectious bursal disease virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. J. Virol. Methods. 181: 117-124.
Umar, S; Munir, M; Ahsan, U; Raza, I; Chowdhury, M; Ahmed, Z and Shah, M (2016). Immunosuppressive interactions of viral diseases in poultry. World’s Poult. Sci. J., 73: 121-135.
Wang, Y; Kang, Z; Gao, H; Gao, Y; Qin, L; Lin, H; Yu, F; Qi, X and Wang, X (2011). A one-step reverse transcription loop-mediated isothermal amplification for detection and discrimination of infectious bursal disease virus. Virol. J., 8: 108.
Xu, MY; Lin, SY; Zhao, Y; Jin, JH; Tang, N and Zhang, GZ (2015). Characteristics of very virulent infectious bursal disease viruses isolated from Chinese broiler chickens (2012-2013). Acta Trop., 41: 128-134.
Xu, J; Zhang, Z; Yin, Y; Cui, S; Xu, S; Guo, Y; Li, J; Wang, J; Liu, X and Han, L (2009). Development of reverse-transcription loop-mediated isothermal am-plification for the detection of infectious bursal disease virus. J. Virol. Methods. 162: 267-271.
Xue, C; Zhang, Y; Zhou, Q; Xu, C; Li, X and Cao, Y (2009). Rapid detection of infectious bursal disease virus by reverse transcription loop-mediated isothermal am-plification assay. J. Vet. Diag. Invest., 21: 841-843.