Scientific Report

Coincidence of congenital infiltrative facial lipoma and lingual myxoma in a newborn Holstein calf

Hobbenaghi, R. 1; Dalir-Naghadeh, B. 2 and Nazarizadeh, A. 1

1Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; 2Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

*Correspondence: A. Nazarizadeh, Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. E-mail: dr_alinizarizadeh@yahoo.com

(Received 4 Dec 2014; revised version 10 Mar 2015; accepted 20 Apr 2015)

Summary

A one-day-old male Holstein calf was presented with a palpable subcutaneous mass, extending from the parotid to the orbital region, involving the entire right side of the face and a large flabby mass without any evidence of inflammation or edema on the tongue. Macroscopically, the cut surface of the lingual mass appeared slightly lobulated, pink, with a mucoid appearance and gelatinous consistency. Histopathological examination confirmed the infiltrative subcutaneous lipoma and lingual myxoma evidenced by low cellularity and abundant basophilic, mucinous stroma. In this report, clinical and detailed histopathological findings of congenital infiltrative myxoma and its coincidence with infiltrative facial lipoma is reported in a newborn calf.

Key words: Calf, Histopathology, Infiltrative lipoma, Infiltrative myxoma

Introduction

Tumors in calves, like those in children, are relatively uncommon. These tumors are interesting because of their occurrence early in life, indicating a probable congenital nature (Misdorp, 2002). Myxoma is a benign neoplastic process (Okamoto et al., 2002) of fibroblast or multipotential mesenchymal cells origin, distinguished by its abundant myxoid matrix rich in mucopolysaccharides (Meuten, 2002; Maxie and Jubb, 2007). Myxoma is extremely rare in cattle and occurs in adult or aged animals as solitary or infiltrative soft masses (Misra et al., 1981; Maxie and Jubb, 2007). In a retrospective study of 6,706 cattle during the period of January 1964 to December 2008, only a single case of myxoma was detected among the 586 tumors in Brazil (Lucena et al., 2011). The etiology of this tumor is unknown (Allen, 2000). Genetics, environmental factors, carcinogenic drugs or miscellaneous toxic substances are among the probable causes of this neoplasm (Yerumah et al., 1999). Tumors arising from subcutaneous lipocytes occur in all species but mostly in dogs and may be multiple. In all species, lipomas are usually found in adult and aged animals, predominantly located on the trunk and proximal limbs (Maxie and Jubb, 2007). Neoplasms of adipose tissue rarely appear in adult cattle, usually single and localized in abdominal cavity (Ozmen, 2005). Infiltrative lipoma is an extremely rare variant of lipoma, as only two cases of infiltrative lipoma have been reported in calves (Di et al., 2002; Sickinger et al., 2009). The objective of this report was to describe the clinical and histopathological characteristics of a unique case of congenital infiltrative subcutaneous lipoma and lingual myxoma in a Holstein calf.

Case description

A one-day-old male Holstein calf was presented to the Clinic of Veterinary Faculty of Urmia University with a palpable subcutaneous mass, extending from the parotid to the orbital region, involving the entire right side of the face. Based on the owner’s statement, the calf was the first parturition of heifer and was delivered with dystocia. The mass was firm, immobile, and painless without any evidence of inflammation or edema over the area. This periorbital mass was elongating into the orbital cavity which had caused extreme exophthalmia and lacrimation. The overlying skin was intact and mobile. The tongue was larger and softer than normal with a mucoid appearance and gelatinous consistency. On cut surface the lesion appeared gelatinous. The objective of this report was to describe the clinical and histopathological characteristics of a unique case of congenital infiltrative subcutaneous lipoma and lingual myxoma in a Holstein calf.

On cut surface the lesion appeared gelatinous. The objective of this report was to describe the clinical and histopathological characteristics of a unique case of congenital infiltrative subcutaneous lipoma and lingual myxoma in a Holstein calf.
slightly lobulated, pink, with a mucoid appearance and gelatinous consistency (Fig. 2).

A well-circumscribed, unencapsulated, firm, homogeneous whitish mass, indistinguishable from normal fat, measuring 22 × 12 × 8 cm, with a tendency to infiltrate the surrounding structures was present in the sub-cutis of right side of the face. The mass was separated by septae of connective tissue (Fig. 3).

The tissue specimens were fixed and sectioned as thin 5 µm and stained by H & E method as well as Masson’s trichrome and PAS techniques for detection of collagen and glycosaminoglycan.

Microscopically, the lingual mass was composed of stellate, spindle and occasionally elliptical cells, randomly scattered within an abundant basophilic, mucinous stroma containing few tiny blood vessels, without exquisite borders. Cellularity was typically low and the cells had small hyperchromatic nuclei. No pleomorphism and mitotic figures were evident.

The mucoid materials stained positively with PAS, indicating the presence of glycosaminoglycan in the myxoid background (Fig. 4). Moreover, Masson’s trichrome staining highlighted the presence of very sparse delicate collagen fibrils in the matrix (Fig. 5). Microscopic observations also revealed that the tumor mass invaded its adjacent tissues. Muscle fascicles and skeletal muscle fibres were infiltrated and replaced by the myxoid matrix with scattered tumour cells. Furthermore, the neoplastic cells penetrated the epithelium of the tongue. The definitive histologic diagnosis was the infiltrative intramuscular myxoma.

Subcutaneous mass was diagnosed as lipoma. Light microscopic examination confirmed the infiltrative nature of the mass. The tumor consisted of well-differentiated adipocytes that were arranged in small lobules with no pleomorphism, anaplasia and mitotic figures. The cells had crescent-shape nuclei and single big fat vacuoles in the cytoplasm (Fig. 6).

Discussion

Congenital myxoma has been reported previously in the muzzle of a female Holstein calf without any picture (Yeruham et al., 1999). To the author’s knowledge, this is the first report that illustrates the detailed

Fig. 1: A large, firm, smooth, mass appears to deform the entire right side of the face and mandible. Notice extreme exophthalmia, lacrimation and bulky protruded tongue

Fig. 2: The cut surface of the lingual mass with slight lobulation and a mucoid appearance

Fig. 3: The excised facial mass. Notice the severe and deep invasion of the mass to the surrounding tissues

Fig. 4: Photomicrograph of the lingual neoplasm, which welded from the epithelium of tongue (arrow), infiltrated into the deep layers of muscles. Scant tumor cells distributed within abundant myxoid matrix stained in pale pink color. High-power view shows the presence of uniform stellate to spindle-shaped cells with hyperchromatic nuclei, (PAS ×100 to ×400)
Intramuscular myxoma must be differentiated from the juxta-articular myxoma, myxoid malignant fibrous histiocytoma (myxofibrosarcoma), low-grade fibromyxoid sarcoma, and myxoid liposarcoma (Allen, 2000). Based on the histological sections, it is too difficult to differentiate juxta-articular myxomas from an intra-muscular myxoma, particularly if the juxta-articular myxoma invades the muscle. However, the anatomic location can be very helpful. Histologically, juxta-articular myxomas tend to be less homogeneous and more fibroblastic and cystic than intramuscular myxomas, and mitotically active atypical reactive cells may be apparent. Myxoid malignant fibrous histiocytoma (myxofibrosarcoma) contains foci of obvious cytologic malignancy, including poorly differentiated or de-differentiated areas (Allen, 2000).

Alternating fibrous and myxoid patterns as well as swirling, whorled patterns exist in low-grade fibromyxoid sarcoma. There are grade Crow’s feet vasculature, lipoblasts (usually signet ring type) and variable cellularity in myxoid liposarcoma versus myxoma (Graadt van Roggen et al., 1999).

Other less confusing conditions include benign and malignant neural lesions (neurofibroma, neurofibrosarcoma and nerve sheath myxoma); rhabdomyosarcoma, chondrosarcoma, and oral focal mucinosis. Each of these lesions has specific diagnostic criteria; for instance, although myxoid changes can be seen within a rhabdomyosarcoma, the cells are relatively undifferentiated, with different subtypes of rhabdomyosarcoma exhibiting different cellular characteristics ranging from primitive round cells to cells exhibiting muscle differentiation (Robin et al., 2004). No hypercellular or pleomorphic areas, mitoses, swirling or vascular pattern and lipoblasts were evident in the present case. Considering all these findings, the mass is thought to be a myxoma.

Macroscopically, lipomas are freely moveable over the underlying deeper tissues and have a distinctive greasy feel. However, the mass reported in this case was immobile and had a firm consistency. Macroscopic and microscopic features were considerably similar to the previous report (Di et al., 2002).

In human neoplasms of adipocyte origin and cardiac myxoma, various chromosomal alterations have been described and some of these changes are used as a diagnostic key (Amano et al., 2003; Bartuma et al., 2008). In veterinary medicine, such determinations are poorly performed and are not fully established (Sickinger et al., 2009); however, since the fetal period is much shorter than the life span of an individual, it can therefore be expected that genetic factors rather than environmental factors play a role in the development of such tumors (Misdorp, 2002).

In this paper, we reported a novel coincidence case of congenital tumors in a calf. Both lipoma and myxoma are mesenchymal tumors. Due to the interdependent derivation of these tumors, it is not uncommon for more than one neoplasm to appear in an animal. Further research on this category should enhance our understanding of oncogenic mechanisms.

Acknowledgement

We would like to thank Dr. M. Mirzaie for her assistance in the preparation of the figures.
References

Lucena, RB; Rissi, DR; Komers, GD; Pierzan, F; Oliveira-Filho, JC; Macêdo, JT; Flores, MM and Barros, CS (2011). A retrospective study of 586 tumours in Brazilian cattle. J. Comp. Path., 145: 20-24.

